Eigenvectors and Eigenvalues Tutorial Sheet, Sheet #4B

Learning targets

Recap definitions



Additional Resources

Tutorials

Software



Problem sheet

Skill Building Questions

Problem 1.

Find the eigenvalues and the associated eigenvectors for the transformations represented in the following figures. (Note: The red vector shown is the result of transforming the blue vector. Be careful with the difference between the two arrowheads )

(a)

1a

$\boxed{eigenvector=v_1 = (1,0), eigenvalue=\lambda_1 = 2}$ and $\boxed{v_2 = (0,1), \lambda_2 = 1}$








(b)

1b

$\boxed{v_1 = (1,0), \lambda_1 = 1}$ appears to be the only eigenvector; however when you do the maths you will see that $\boxed{v_2 = (-1,0), \lambda_2 = 1}$ also appears. These eigenvectors are linearly dependent, so they are considered as a single vector.








(c)

1c

$\boxed{All \space vectors \space are \space eigenvectors \space for \space \space a \space uniform \space scaling}$, all with $\boxed{\lambda=2}$ in this case.








(d)

1d

This is a shear transformation. $\boxed{v_1 = (1,0), \lambda_1 = 2}$ appears to be the only eigenvector; however when you do the maths you will see that $\boxed{v_2 = (-1,0), \lambda_2 = 2}$ also appears. These eigenvectors are linearly dependent, so they are considered as a single vector.








(e)

1e

$\boxed{v_1 = (0,1), \lambda_1 = 0.5}$ and $\boxed{v_2 = (0,-1), \lambda_2 = 0.5}$. These eigenvectors are linearly dependent, so they are considered as a single vector.








(f)

1f

No real eigenvectors, all vectors change span.








(g)

1g

$\boxed{v_1 = (1,0), \lambda_1 = 2}$ and $\boxed{v_2 = (0,1), \lambda_2 = -2}$









Problem 2.

Find the eigenvalues and the associated eigenvectors of the matrices: A quick trick for finding the eigenvalues of a 2x2 matrix just by looking at it. This is a good way for double checking your answer. Remember what you learned last week with Matlab - it’ll make your life a lot easier…

(a) $\begin{pmatrix}1&3\\ 2&2\end{pmatrix}$

$\Rightarrow{}\quad B=\begin{pmatrix}1&3\\2&2\end{pmatrix} - \lambda\begin{pmatrix}1&0\\0&1\end{pmatrix} \quad\Rightarrow{}\quad B = \begin{pmatrix}1-\lambda & 3\\2 & 2 - \lambda\end{pmatrix}$ $\Rightarrow{}\quad det(B) = 0 \quad\Rightarrow{}\quad (1 - \lambda)(2- \lambda) - 6 = 0 \quad\Rightarrow{}\quad \lambda^2 -3\lambda - 4 = 0$ $\Rightarrow{}\quad \text{factorizing}: (\lambda-4)(\lambda+1)=0$ $\Rightarrow{}\quad \text{eigenvalues}: \lambda_1 = 4, \quad\lambda_2 = -1$ For $\lambda_1 = 4, $ $\Rightarrow{}\quad Bx = 0 \quad\Rightarrow{}\quad \begin{pmatrix}-3&3\\\ 2&-2\end{pmatrix} \begin{pmatrix}x_1\\\ x_2\end{pmatrix} = \begin{pmatrix}0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad \begin{aligned} - 3x_1 + 3x_2 =& 0\\\ 2x_1 - 2x_2 =& 0\end{aligned}\\\ \Rightarrow{}\quad x_1 = x_2 \quad\Rightarrow{}\quad \text{ in parametric form } x_1=t,\quad x_2=t\quad \text{ for any t } \in R\\\ \Rightarrow{}\quad \text{ if } t=1, \text{ eigenvector of } \lambda_1:\quad (1,1)$ For $\lambda_2 = -1, $ $\Rightarrow{}\quad \begin{pmatrix}2&3\\\ 2&3\end{pmatrix} \begin{pmatrix}x_1\\\ x_2\end{pmatrix} = \begin{pmatrix}0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad \begin{aligned} 2x_1 + 3x_2 =& 0\\\ 2x_1 + 3x_2 =& 0\end{aligned} \quad\Rightarrow{}\quad x_1 = -\frac{3x_2}{2}\\\ \Rightarrow{}\quad \text{ in parametric form } x_1=-\frac{3t}{2},\quad x_2=t\quad \text{ for any } t \in R\\\ \Rightarrow{}\quad \text{ if }t=2, \text{ eigenvector of } \lambda_1:\quad (-3,2)$ To summarise:
For $\boxed{\lambda_1 = 4, \begin{pmatrix}1,1\end{pmatrix}},$
For $\boxed{\lambda_2 = -1, \begin{pmatrix}-3,2\end{pmatrix}}.$








(b) $\begin{pmatrix}1&3&1\\ 0&5&0\\ 1&3&0\end{pmatrix}$

$\Rightarrow{}\quad B = \begin{pmatrix}1&3&1\\0&5&0\\1&3&0\end{pmatrix} - \lambda \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix} \quad\Rightarrow{}\quad \begin{pmatrix} 1-\lambda & 3 & 1\\ 0 & 5-\lambda & 0\\ 1 & 3 & -\lambda\end{pmatrix}$ $\Rightarrow{}\quad det(B) = (1-\lambda)(5-\lambda)(-\lambda) + 1(-(5-\lambda)(1)) = 0 \quad\Rightarrow{}\quad (5-\lambda)(\lambda^2 -\lambda -1) = 0\\ \Rightarrow{}\quad \begin{cases} \begin{aligned} 5 - \lambda =& 0\\ \lambda^2 -\lambda -1 =& 0 \end{aligned} \end{cases} \quad\Rightarrow{}\quad \text{eigenvalues}: \lambda_1 = 5, \quad\lambda_2 = \frac{1+\sqrt{5}}{2}, \quad\lambda_3 = \frac{1-\sqrt{5}}{2}$
For $\lambda_1 = 5$ $\Rightarrow{}\quad \begin{pmatrix}-4&3&1\\\ 0&0&0\\\ 1&3&-5\end{pmatrix} \begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \Rightarrow{}\quad \begin{cases} \begin{aligned} -4x_1 +3x_2 +x_3 =& 0\\\ 0x_1 +0x_2 +0x_3 =& 0\\\ x_1 +3x_2 -5x_3 =& 0 \end{aligned} \end{cases}\\\ \Rightarrow{}\quad \begin{cases} x_1 = \frac{6x_2}{5}\\\ x_2 = \frac{19x_3}{15} \end{cases} \quad\Rightarrow{}\quad \text{ in parametric form } x_1=\frac{6t}{5},\quad x_2=\frac{19t}{15},\quad x_3=t \text{ for any } t \in R\\\ \Rightarrow{}\quad \text{ if } t=15, \text{ eigenvector of } \lambda_1:\quad (18,19,15)$
For $\lambda_2 = \frac{1+\sqrt{5}}{2}$ $\Rightarrow{}\quad \begin{pmatrix} 1 - \frac{1+\sqrt{5}}{2} & 3 & 1\\\ 0 & 5 - \frac{1+\sqrt{5}}{2} & 0 \\\ 1 & 3 & - \frac{1+\sqrt{5}}{2}\end{pmatrix} \begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \Rightarrow{}\quad \begin{cases} \begin{aligned} \bigg(1 - \frac{1+\sqrt{5}}{2}\bigg)x_1 + 3x_2 + x_3 =& 0\\\ \bigg(5 - \frac{1+\sqrt{5}}{2}\bigg)x_2 =& 0\\\ x_1 + 3x_2 -\bigg(\frac{1+\sqrt{5}}{2}\bigg)x_3 =& 0 \end{aligned} \end{cases}\\\ \Rightarrow{}\quad \begin{cases} x_2 = 0\\\ x_1 = \bigg(\frac{1+\sqrt{5}}{2}\bigg)x_3 \end{cases} \quad\Rightarrow{}\quad \text{ in parametric form } x_1=\bigg(\frac{1+\sqrt{5}}{2}\bigg)t,\quad x_2=0,\quad x_3=t \text{ for any } t \in R \\\ \Rightarrow{}\quad \text{ if } t=1, \text{ eigenvector of }\lambda_2:\quad \big(\frac{1+\sqrt{5}}{2}, 0, 1\big)$
For $\lambda_3 = \frac{1-\sqrt{5}}{2}$ $\Rightarrow{}\quad \begin{pmatrix}1-\frac{1-\sqrt{5}}{2} & 3 & 1 \\\ 0 & 5-\frac{1-\sqrt{5}}{2} & 0 \\\ 1 & 3 & -\frac{1-\sqrt{5}}{2}\end{pmatrix} \begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix}\\\ \Rightarrow{}\quad \begin{cases} x_2 = 0\\\ x_1 = \bigg(\frac{1-\sqrt{5}}{2}\bigg)x_3 \end{cases} \quad\Rightarrow{}\quad \text{ in parametric form } x_1=\bigg(\frac{1-\sqrt{5}}{2}\bigg)t,\quad x_2=0,\quad x_3=t \text{ for any } t \in R$ $\Rightarrow{}\quad \text{ if } t=1, \text{ eigenvector of } \lambda_3:\quad \big(\frac{1-\sqrt{5}}{2}, 0, 1\big)$
To summarise:
$\boxed{\text{For } \lambda_1 = 5, \begin{pmatrix}18\\\ 19\\\ 15\end{pmatrix} \\\ \text{For } \lambda_2 = \frac{1+\sqrt{5}}{2}, \begin{pmatrix}\frac{1+\sqrt{5}}{2}\\\ 0\\\ 1\end{pmatrix} \\\ \text{For } \lambda_3 = \frac{1-\sqrt{5}}{2}, \begin{pmatrix}\frac{1-\sqrt{5}}{2}\\\ 0\\1\end{pmatrix}}$








(c) $\begin{pmatrix}3&1&1\\ 2&4&2\\ 1&1&3\end{pmatrix}$

$\Rightarrow{}\quad B = \begin{pmatrix}3&1&1\\2&4&2\\1&1&3\end{pmatrix} - \lambda \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix} \quad\Rightarrow{}\quad \begin{pmatrix} 3-\lambda & 1 & 1\\ 2 & 4-\lambda & 2\\ 1 & 1 & 3-\lambda\end{pmatrix}$ $\Rightarrow{}\quad det(B) = (3-\lambda)((4-\lambda)(3-\lambda)-2) - 1(2(3-\lambda)-2) + 1(2 - 1(4 - \lambda)) = 0$ $\Rightarrow{}\quad p(\lambda): \lambda^3 -10\lambda^2 + 28\lambda -24 =0$ $\Rightarrow{}\quad$ possible roots of $p(\lambda) \quad\pm 1, 2, 3, 4, 6, 8, 12, 24$ $\Rightarrow{}\quad p(1) \neq 0;\quad p(-1) \neq 0;\quad p(2) = 0$ $\Rightarrow{}\quad \lambda_1 = 2$ is an eigenvalue and $(\lambda -2)$ is a factor of the polynomial $p(\lambda)$, then dividing the polynomial $p(\lambda)$ by $(\lambda -2)$ $\Rightarrow{}\quad \lambda^3 -10\lambda^2 + 28\lambda -24 = (\lambda - 2)(\lambda^2 -8\lambda -12)=0$
$\Rightarrow{}\quad$ eigenvalues: $\lambda_1=2,\quad \lambda_2=2,\quad \lambda_2=6$

For $\lambda_1 = 2$ and $\lambda_2 = 2$ $\Rightarrow{}\quad \begin{pmatrix}1&1&1\\\ 2&2&2\\\ 1&1&1\end{pmatrix}\begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad x_1 + x_2 + x_3 = 0 \quad\Rightarrow{}\quad x_1 = -x_2 -x_3$ $\Rightarrow{}\quad$ in parametric form $x_1=-t-u,\quad x_2=t,\quad x_3=u$ for any $t,u \in R$ $\Rightarrow{}\quad$ if $t=0$ and $u=1$, eigenvector of $\lambda_1: (-1,0,1)$ $\Rightarrow{}\quad$ if $t=1$ and $u=0$, eigenvector of $\lambda_2: (-1,1,0)$

For $\lambda_3 = 6$ $\Rightarrow{}\quad \begin{pmatrix}-3&1&1\\\ 2&-2&2\\\ 1&1&3\end{pmatrix}\begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad \begin{cases} -3x_1 + x_2 + x_3 = 0\\\ 2(x_1 - x_2 + x_3) =0\\\ x_1 + x_2 - 3x_3 =0 \end{cases}\quad\Rightarrow{}\quad \begin{cases} x_1 = x_3\\ x_2 = 2x_3 \end{cases}$ $\Rightarrow{}\quad$ in parametric form $x_1=t,\quad x_2=2t,\quad x_3=t$ for any $t \in R$ $\Rightarrow{}\quad$ if $t=1$, eigenvector of $\lambda_3: (1,2,1)$

To summarise:
$\boxed{\text{For } \lambda_1 = 2 \text{ and } \lambda_2 = 2, \begin{pmatrix}-1\\\ 0\\\ 1\end{pmatrix}, \begin{pmatrix}-1\\\ 1\\\ 0\end{pmatrix}. \\\ \text{For } \lambda_3 = 6, \begin{pmatrix}1\\\ 2\\\ 1\end{pmatrix}}$








(d) $\begin{pmatrix}1&-1&-1\\ 1&-1&0\\ 1&0&-1\end{pmatrix}$

$\Rightarrow{}\quad B = \begin{pmatrix}1&-1&-1\\1&-1&0\\1&0&-1\end{pmatrix} - \lambda \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix} \quad\Rightarrow{}\quad \begin{pmatrix} 1-\lambda & -1 & -1\\ 1 & -1-\lambda & 0\\ 1 & 0 & -1-\lambda\end{pmatrix}$ $\Rightarrow{}\quad det(B) = (1-\lambda)(-1-\lambda)(-1-\lambda) - (-1)(-1-\lambda) + (-1)(-(-1 - \lambda)) = 0$ $\Rightarrow{}\quad (1 + \lambda)(-\lambda^2 -1) = 0 \quad\Rightarrow{}\quad \begin{cases} 1 + \lambda = 0\\ -\lambda^2 -1 =0 \end{cases}$
$\Rightarrow{}\quad$ eigenvalues: $\lambda_1 = -1, \quad \lambda_2 = i, \quad \lambda_3 =-i$

For $\lambda_1 = -1$ $\Rightarrow{}\quad \begin{pmatrix}2&-1&-1\\\ 1&0&0\\\ 1&0&0\end{pmatrix}\begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad \begin{cases} 2x_1 -x_2 -x_3 = 0\\\ x_1 = 0 \end{cases}$ $\Rightarrow{}\quad \begin{cases} x_2= -x_3\\\ x_1 = 0 \end{cases}$
$\Rightarrow{}\quad$ in parametric form $x_1=0,\quad x_2=t, \quad x_3=-t$ for any $t \in R$ $\Rightarrow{}\quad$ if $t=1$, eigenvector $(0,1,-1)$

For $\lambda_2 = i$ $\Rightarrow{}\quad \begin{pmatrix}1-i&-1&-1\\\ 1&-1-i&0\\\ 1&0&-1-i\end{pmatrix}\begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad \begin{cases} x_1(1-i) -x_2 -x_3 =0\\\ x_1 -(1+i)x_2 =0\\\ x_1 -(1+i)x_3 =0 \end{cases}$ $\Rightarrow{}\quad \begin{cases} x_1 =(1+i)x_2\\\ x_2 = x_3 \end{cases}$
$\Rightarrow{}\quad$ in parametric form $x_1=(1+i)t,\quad x_2=t,\quad x_3=t$ for any $t \in R$ $\Rightarrow{}\quad$ if $t=1$, eigenvector $(1+i,1,1)$

For $\lambda_3 = -i$ $\Rightarrow{}\quad \begin{pmatrix}1+i&-1&-1\\\ 1&-1+i&0\\\ 1&0&-1+i\end{pmatrix}\begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad \begin{cases} x_1(1+i) -x_2 -x_3 =0\\\ x_1 -(1-i)x_2 =0\\\ x_1 -(1-i)x_3 =0 \end{cases}$ $\Rightarrow{}\quad \begin{cases} x_1 =(1-i)x_2\\ x_2 = x_3 \end{cases}$
$\Rightarrow{}\quad$ in parametric form $x_1=(1-i)t,\quad x_2=t,\quad x_3=t$ for any $t \in R$ $\Rightarrow{}\quad$ if $t=1$, eigenvector $(1-i,1,1)$

To summarise: $\boxed{\text{For } \lambda_1 = -1, \begin{pmatrix}0\\\ 1\\\ -1\end{pmatrix}, \\\ \text{For } \lambda_2 = i. \begin{pmatrix}1 + i \\\ 1\\\ 1\end{pmatrix}, \\\ \text{For } \lambda_3 = -i,\begin{pmatrix}1 - i \\\ 1\\\ 1\end{pmatrix}}$









Problem 3.

Let $A$ be a $2\times2$ matrix whose trace equals 2 and determinant equals -2. Find the eigenvalues of $A$. (The trace of a square matrix is the sum of the terms along it’s leading diagonal.)

$\Rightarrow{}\quad$ considering $A = \begin{pmatrix}a&b\\c&d\end{pmatrix} \quad\Rightarrow{}\quad \begin{cases} a + d = 2\\\ ad - bc = -2 \end{cases}$ $\Rightarrow{}\quad \begin{pmatrix}a&b\\c&d\end{pmatrix} -\lambda\begin{pmatrix}1&0\\0&1\end{pmatrix} = \begin{pmatrix}a-\lambda&b\\c&d-\lambda\end{pmatrix} = B$ $\Rightarrow{}\quad det(B) = (a - \lambda)(d - \lambda) - bc = 0$ $\Rightarrow{}\quad \lambda^2 - 2\lambda - 2 = 0$
$\Rightarrow{}\quad$ eigenvalues: $\boxed{\lambda_1 = 1 + \sqrt(3), \quad \lambda_2 = 1 - \sqrt(3)}$









Problem 4.

$A=\begin{pmatrix}4&-6&2\\ -1&9&-2\\ -4&12&-2\end{pmatrix}$
Given that 6 is one of the eigenvalues and its determinant is 36. Find the other eigenvalues of $A$.

$\Rightarrow{}\quad$ considering $B=\begin{pmatrix}4-\lambda&-6&2\\-1&9-\lambda&-2\\-4&12&-2-\lambda\end{pmatrix}$ $\Rightarrow{}\quad det(B) = (4 - \lambda)((9-\lambda)(-2-\lambda)+24)+6(-(-2-\lambda)-8)+2(-12+4(9-\lambda)) = 0$
$\Rightarrow{}\quad p(\lambda): \lambda^3 -11\lambda^2 +36\lambda -36 = 0$ $\Rightarrow{}\quad$ if $\lambda_1 = 6$, then $(\lambda - 6)$ is a factor of the polynomial $p(\lambda)$ then dividing the polynomial $p(\lambda)$ by $(\lambda -6)$
$\Rightarrow{}\quad \lambda^3 -11\lambda^2 +36\lambda -36 = (\lambda -6)(\lambda^2 -5\lambda + 6) = 0$
$\Rightarrow{}\quad$ eigenvalues $\boxed{\lambda_2 = 2, \quad \lambda_3 = 3}$









Problem 5.

Given that $\begin{pmatrix}-2\\ 1\\ k\end{pmatrix}$ is an eigenvector of the matrix $\begin{pmatrix}1&2&-1\\ 1&0&1\\ 4&-4&5\end{pmatrix}$ find $k$ and the corresponding eigenvalue.

$\Rightarrow{}\quad B = \begin{pmatrix}1-\lambda&2&-1\\1&-\lambda&1\\4&-4&5-\lambda\end{pmatrix} \quad\Rightarrow{}\quad det(B) = p(\lambda) = \lambda^3 -6\lambda^2 +11\lambda -6 = 0$
$\Rightarrow{}\quad \begin{pmatrix}1-\lambda&2&-1\\\ 1&-\lambda&1\\\ 4&-4&5-\lambda\end{pmatrix}\begin{pmatrix}-2\\\ 1\\\ k\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix}$
$\Rightarrow{}\quad \begin{pmatrix} -2(1-\lambda) + 2 - k = 0\\\ -2 -\lambda + k = 0\\\ -8 -4 +k(5 -\lambda)=0 \end{pmatrix}$ $\Rightarrow{}\quad$ evaluating these three equations with $\boxed{\lambda_2 = 2}$
$\Rightarrow{}\quad \boxed{k = 4}$









Problem 6.

The eigenvalues of the matrix $A=\begin{pmatrix}1&1&1\\ -1&3&1\\ -1&1&3\end{pmatrix}$ are 2 and 3. Find the corresponding eigenvectors and write down a matrix which diagonalizes $A$.

For $\lambda_1 = 2$ and $\lambda_2 = 2$
$\Rightarrow{}\quad \begin{pmatrix}-1&1&1\\-1&1&1\\-1&1&1\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}$ $\Rightarrow{}\quad -x_1 + x_2 + x_3 = 0$ $\Rightarrow{}\quad x_1 = x_2 + x_3$
$\Rightarrow{}\quad$ in parametric form $x_1=t+u, \quad x_2=t,\quad x_3=u$ for any $t,u \in R$
$\Rightarrow{}\quad$ if $t=0,\quad u=1$, eigenvector of $\lambda_1:\quad (1,0,1)^T$
$\Rightarrow{}\quad$ if $t=1,\quad u=0$, eigenvector of $\lambda_2:\quad (1,1,0)^T$

For $\lambda_3 = 3$ $\Rightarrow{}\quad \begin{pmatrix}-2&1&1\\\ -1&0&1\\\ -1&1&0\end{pmatrix}\begin{pmatrix}x_1\\\ x_2\\\ x_3\end{pmatrix} = \begin{pmatrix}0\\\ 0\\\ 0\end{pmatrix} \quad\Rightarrow{}\quad \begin{cases} -2x_1 + x_2 + x_3 = 0\\\ -x_1 + x_3 = 0\\\ -x_1 + x_2 = 0 \end{cases}$
$\Rightarrow{}\quad \begin{cases} x_1 = x_3\\\ x_1 = x_2 \end{cases}$ $\Rightarrow{}\quad$ in parametric form $x_1=t,\quad x_2=t,\quad x_3=t$ for any $t \in R$ $\Rightarrow{}\quad$ if $t=1$, eigenvector of $\lambda_3:\quad (1,1,1)^T$

$\Rightarrow{}\quad P = \begin{pmatrix}1&1&1\\\ 0&1&1\\\ 1&0&1\end{pmatrix}$ is an invertible matrix that diagonalizes $A$,
so that $P^{-1}AP = \begin{pmatrix}2&0&0\\\ 0&2&0\\\ 0&0&3\end{pmatrix}$

To summarise: For $\lambda_1 = 2$ and $\lambda_2 = 2$, eigenvectors of $\boxed{\lambda_1: (1,0,1)^T}, \boxed{\lambda_2: (1,1,0)^T}$
For $\boxed{\lambda_3 = 3, (1,1,1)^T.}$









Exam Style Questions

Problem 7.

This is the exam question from the Linear Transforms tutorial sheet with an extra part on eigenvectors and eigenvalues. The following figure shows a square in $\mathbb{R}^2$, marked with a circle and cross on its perimeter.

(a) On a single plot, sketch the result of applying the following transformation, A, to the square (including the new locations of the circle and cross).

\(A = \begin{bmatrix} 2 \ 0 \\\ 1 \ 1.5\end{bmatrix}\)









(b) On the same axes draw the spans of any eigenvectors of A and label these spans with their corresponding eigenvalues.

7a

$\boxed{\color{teal}{\lambda = 1.5, \lambda = 2}}$








(c) Assuming the area of the initial square is 4, what is the area of this region after the transformation?

$det(A) = 3$, therefore area$ = 3 \cdot 4 = \boxed{12}$








Extension Questions

Problem 8.

Let $A$ be a $3\times3$ matrix whose trace equals 5 and determinant equals -12. Given that 3 is an eigenvalue of $A$, find the other eigenvalues.

$\Rightarrow{}\quad$ considering $A = \begin{pmatrix}a&b&c\\d&e&f\\g&h&j\end{pmatrix}$
$\Rightarrow{}\quad \begin{cases} a + e +j = 5\\ a(ej - fh) - b(dj - fg) +c(dh - eg) = -12 \end{cases}\\ \Rightarrow{}\quad \begin{pmatrix}a&b&c\\d&e&f\\g&h&j\end{pmatrix} -\lambda\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix} = \begin{pmatrix}a-\lambda&b&c\\d&e-\lambda&f\\g&h&j-\lambda\end{pmatrix} = B\\ \Rightarrow{}\quad \text{det}(A) = a(ej - fh) +a(\lambda^2 -e\lambda -j\lambda) - \lambda(\lambda^2 - (e+j)\lambda +ej -fh) - \\ b(dj - fg) + bd\lambda +c(dh - eg) + cg\lambda = 0\\ \Rightarrow{}\quad -\lambda^3 + \lambda^2(a + e + j) +\lambda(bd -ae -aj -ej +fh +cg) -12 = 0\\ \Rightarrow{}\quad -\lambda^3 + 5\lambda^2 +\lambda(bd -ae -aj -ej +fh +cg) -12 = 0$
$\Rightarrow{}\quad$ for $\lambda_1 = 3,\quad bd -ae -aj -ej +fh +cg = -2$ $\Rightarrow{}\quad -\lambda^3 +5\lambda^2 -2\lambda -12 = 0 \quad\Rightarrow{}\quad (\lambda -3)(-\lambda^2 + 2\lambda +4) = 0$
$\Rightarrow{}\quad$ Eigenvalues: $\boxed{\lambda_2 = 1 + \sqrt{5},\quad \lambda_3 = 1 - \sqrt{5}}$









Problem 9.

For each of the following matrices, find an invertible matrix which diagonalizes it. (click ‘toggle answer’ to see the definition for a diagonalisable matrix)

An $n \times n$ matrix $A$ is said to be diagonalisable if it can be written on the form $A = PDP^{-1}$, where $D$ is a diagonal $n \times n$ matrix with the eigenvalues of $A$ as its entries and $P$ is a nonsingular $n \times n$ matrix consisting of the eigenvectors corresponding to the eigenvalues in $D$

(a) $A = \begin{pmatrix}1&3\\ 2&2\end{pmatrix}$

$\Rightarrow{} \begin{cases} \lambda_1 = 4, \quad v_1 = (1,1)^T\\ \lambda_2 = -1, \quad v_2 = (-3,2)^T \end{cases}\\ \Rightarrow{} P = \begin{pmatrix}1&-3\\1&2\end{pmatrix}$ is an invertible matrix that diagonalizes $A$, so that $P^{-1}AP = \begin{pmatrix}4&0\\0&-1\end{pmatrix}$








(b) $A = \begin{pmatrix}1&-1\\ 1&3\end{pmatrix}$

$\Rightarrow{} \begin{cases} \lambda_1 = 2, \quad v_1 = (1,-1)^T\\ \lambda_2 = 2, \quad v_2 = (2,-2)^T \end{cases} \quad\Rightarrow{} P = \begin{pmatrix}-1&-2\\1&2\end{pmatrix}$ is not invertible








(c) $A=\begin{pmatrix}1&3&1\\ 0&5&0\\ 1&3&0\end{pmatrix}$

$\Rightarrow{} \begin{cases} \lambda_1 = 5, \quad v_1 = (18,19,15)^T\\ \lambda_2 = \frac{1+\sqrt(5)}{2}, \quad v_2 = (\frac{1+\sqrt{5}}{2},0,1)^T\\ \lambda_3 = \frac{1-\sqrt(5)}{2}, \quad v_3 = (\frac{1-\sqrt{5}}{2},0,1)^T \end{cases}\\ \Rightarrow{} P = \begin{pmatrix}18&\frac{1+\sqrt{5}}{2}&\frac{1-\sqrt{5}}{2}\\19&0&0\\15&1&1\end{pmatrix}$ is an invertible matrix that diagonalizes $A$, so that $P^{-1}AP = \begin{pmatrix}5&0&0\\0&\frac{1+\sqrt{5}}{2}&0\\0&0&\frac{1-\sqrt{5}}{2}\end{pmatrix}$








(d) $A = \begin{pmatrix}1&-1&-1\\ 1&-1&0\\ 1&0&-1\end{pmatrix}$

$\Rightarrow{} \begin{cases} \lambda_1 = -1, \quad v_1 = (0,1,-1)^T\\ \lambda_2 = i, \quad v_2 = (1+i,1,1)^T\\ \lambda_3 = -i, \quad v_3 = (1-i,1,1)^T \end{cases}\\ \Rightarrow{} P = \begin{pmatrix}0&1+i&1-i\\1&1&1\\-1&1&1\end{pmatrix}$ is an invertible matrix that diagonalizes $A$, so that $P^{-1}AP = \begin{pmatrix}-1&0&0\\0&i&0\\0&0&-i\end{pmatrix}$









Problem 10.

Given that for a $(2\times2)$ matrix $M$, one of the eigenvalue $\lambda_1=8$ and its corresponding eigenvector $v_1=(1,1)$, it is also known that matrix $M$ changes point $(-1,2)$ to $(-2,4)$.

(a) Find matrix $M$.

Let matrix $M$ be $M = \begin{pmatrix}a&b\\\ c&d\end{pmatrix}$

$\Rightarrow{}\quad \begin{pmatrix}a&b\\\ c&d\end{pmatrix}\begin{pmatrix}1\\\ 1\end{pmatrix} = 8\begin{pmatrix}1\\\ 1\end{pmatrix}
\quad\Rightarrow{}\quad \begin{cases} a+b = 8\\\ c+d = 8 \end{cases}$

Also, from the question is is known that:
$\quad \begin{pmatrix}a&b\\\ c&d\end{pmatrix}\begin{pmatrix}-1\\\ 2\end{pmatrix} = \begin{pmatrix}-2\\\ 4\end{pmatrix}$

$\quad\Rightarrow{}\quad \begin{cases} -a+2b = -2\\\ -c+2d = 4 \end{cases}$
Solving simultaneously, we get: $\quad\Rightarrow{}\quad \begin{cases} a=6\\\ b=2\\\ c=4\\\ d=4 \end{cases}$

$\quad\Rightarrow{}\quad \boxed{M=\begin{pmatrix}6&2\\\ 4&4\end{pmatrix}}$








(b) Find $\lambda_2$ and $v_2$.

$\Rightarrow{}\quad$ from (a) we know $f(\lambda) =\begin{pmatrix}\lambda-6&-2\\\ -4&\lambda-4\end{pmatrix}$

${det(M)=(\lambda-6)(\lambda-4)-8=\lambda^2-10\lambda+16=(\lambda-2)(\lambda-8)=0}$

Therefore the other eigenvalue for matrix $M$ is $\lambda=2$
For $\lambda_2 = 2, $ $\Rightarrow{}$ let $v_2= \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow{} Mv_2 =\begin{pmatrix} 6x+2y \\4x+4y\end{pmatrix}=2 \begin{pmatrix}x\\y \end{pmatrix}$ $\Rightarrow{}\quad \boxed{v_2 = \quad \begin{pmatrix} -1 \\ 2 \end{pmatrix}}$









(c) For line $l: x-y+1=0$, find $l’$ after transformed by matrix $M$.

Let $(x,y)$ be a point on line $l$, and $(x',y')$ is point $(x,y)$ after transformed by matrix $M$.

$\Rightarrow{}\quad \begin{pmatrix}6&2\\\ 4&4\end{pmatrix}\begin{pmatrix}x\\\ y\end{pmatrix} = \begin{pmatrix}x'\\\ y'\end{pmatrix}$

$\Rightarrow{}\quad \begin{cases} x = \frac{1}{4}x'-\frac{1}{8}y'\\\ y = -\frac{1}{4}x'+\frac{3}{8}y' \end{cases}$

$\Rightarrow{}\quad x'-y'+2=0$
$\Rightarrow{}\quad l': \boxed{y=x+2}$











Answers



For Printing



Revision Questions

The questions included are optional, but here if you want some extra practice.



Next week, Power Series and Sequences!